China factory Machinery Components Balancing Machine, Gear, Wheel, Pulley, Axle, Shaft, Grinding Spindle (PHQ-300H) pulley puller

Product Description

Balancing Machine for Grinding spindle (PHQ-300)

Modular structure:
Quick change-over from work piece to the next 
High balancing accuracy 
Infinitely variable DC drive 
Optimum operating height 
Installation without bolting 

Production Description:

Specially designed brackets transmit mechanical force with low vibration damping
Durable and reliable sensor possesses good linearity
Permanent calibration brings high accuracy with a permission of large initial unbalance amount
Belt-driving offers higher precision and easier operation
Advanced electrical measuring system and friendly man-machine interface
Modular design offers a wide range of application

 

Range of Application:

This balancing machine is widely used in balancing rotatable bodies, such as kinds of medium-sized and small-sized motors rotors, impeller, fans, crankshaft, turbocharger, water pump, roller, grinding wheel, main shaft of machine tool , textile machinery, tool , spindle, etc .. Driven by belt, equipped with Variable speed motor to drive .Which ensures high quality balancing and precision. quick booting ,easy operation. and high efficiency  

Special Features:

The measuring unit employs JP-580 Electrical Measuring unit is a system of top function and precision. It can be applied in all kinds of single/double plate and hard/soft bearing machines, and can be connected with different velocity and pressure sensors easily. The unit adopts industrial computer made in Xihu (West Lake) Dis.a Industry Co, which equiped with 17-inch LCD screen and Windows XP Operating System. Featuring with high running speed and reliabilitystrong dustproof and shakeproof ability, it is applicable to various industrial environments

Production Parameters: 

Technical data at a glance PHQ-160H PHQ-300H PHQ-500H
Max Mass of Workpiece(kg) 160 300 500
Max Diameter of Workpiece (mm) Φ1000 Φ1220 Φ1500
Distance Between Two Support Bearings (mm) 130~1270 130~1270 130~1270
Journal Diameter Scope of Workpiece (mm) Φ 15~753) Φ 15~753) Φ 15~753)
Diameter Scope of Driving Belt (mm) Φmax400 Φmax500 Φmax600
Rotational Speed when the Diameter of Driving Belt is 100mm (r/min)  756,11761) 756,11761) 756,11761)
Motor Power (kw) 1.52) 1.52) 2.22)
Length of Bed (mm) 1500 1500 1500
Min Achievable Residual Unbalance Amount (emar) ≤0.5g· mm/kg ≤0.5g· mm/kg ≤0.5· mm/kg

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Vibration Testing Machine
Maxcapacity: <1000KN
Accuracy Grade: 1
Load Way: Electronic Load
Loading Method: Dynamic Load
Display: Digital
Customization:
Available

|

Customized Request

gear pulley

What maintenance procedures are necessary to ensure the reliability of gear pulleys?

Proper maintenance procedures are crucial for ensuring the reliability and longevity of gear pulleys. Here are some essential maintenance steps to consider:

  1. Regular Inspection: Conduct routine inspections of the gear pulleys to check for any signs of wear, damage, or misalignment. Inspect the gear teeth, pulley surfaces, and the overall condition of the pulley assembly. Look for any cracks, chips, or excessive wear that may affect the pulley’s performance.
  2. Lubrication: Ensure that the gear pulleys are adequately lubricated. Lubrication helps reduce friction and wear between the gear teeth and the pulley surfaces. Follow the manufacturer’s recommendations for the appropriate lubricant type and schedule. Apply lubrication as specified to maintain smooth operation and prevent premature failure.
  3. Tension Adjustment: Check the tension of the belt connected to the gear pulleys. Proper tension is essential for efficient power transmission and to prevent slippage. If the belt is too loose or too tight, adjust the tension according to the manufacturer’s guidelines. Use tensioning devices such as idler pulleys or tensioners to achieve the optimal tension.
  4. Alignment: Ensure that the gear pulleys are properly aligned. Misalignment can lead to excessive wear, noise, and reduced efficiency. Use alignment tools and techniques to align the pulleys accurately. Check the alignment periodically and make any necessary adjustments to maintain proper alignment.
  5. Cleaning: Keep the gear pulleys clean and free from dirt, debris, and contaminants. Regularly clean the pulley surfaces using a suitable cleaning method recommended by the manufacturer. This helps prevent abrasive particles from damaging the gear teeth and ensures smooth operation.
  6. Replacement: If any significant wear, damage, or defects are observed during inspection, consider replacing the gear pulleys promptly. Delaying the replacement can result in further damage to the pulleys and other system components. Follow the manufacturer’s guidelines and specifications for selecting and installing the appropriate replacement pulleys.
  7. Professional Maintenance: In complex HVAC systems or air conditioning units, it is often advisable to seek professional maintenance services. HVAC technicians or qualified professionals can perform comprehensive inspections, maintenance, and repairs on gear pulleys and associated components.

By following these maintenance procedures, you can ensure the reliability and optimal performance of gear pulleys in HVAC systems and air conditioning units. Regular inspections, lubrication, tension adjustment, alignment checks, cleaning, and timely replacement contribute to the longevity and efficiency of gear pulleys, minimizing the risk of unexpected failures and system downtime.

gear pulley

Can gear pulleys be customized for specific machinery and equipment?

Yes, gear pulleys can be customized to meet the specific requirements of machinery and equipment. Customization allows for the adaptation of gear pulleys to fit unique applications, ensuring optimal performance and compatibility. Here’s a detailed explanation of how gear pulleys can be customized for specific machinery and equipment:

Design and Dimensions:

Gear pulleys can be customized in terms of their design and dimensions. The number of teeth, pitch diameter, and overall size of the gear pulley can be adjusted to match the specific requirements of the machinery or equipment. This customization ensures proper fit and alignment within the system, enabling efficient power transmission and smooth operation.

Material Selection:

The choice of materials for gear pulleys can be customized based on the application’s needs. Different materials, such as steel, cast iron, aluminum, or various alloys, can be selected to optimize strength, durability, and resistance to wear and corrosion. The material selection can be tailored to withstand specific operating conditions, such as high temperatures, harsh environments, or exposure to chemicals or moisture.

Tooth Profile and Configuration:

The tooth profile and configuration of gear pulleys can be customized to suit the specific machinery or equipment requirements. Different tooth profiles, such as spur, helical, bevel, or worm gears, can be employed based on factors like load capacity, noise reduction, and efficiency. The gear pulley’s tooth configuration, such as pressure angle, module, and helix angle, can also be tailored to optimize performance and ensure smooth and reliable power transmission.

Gear Ratio:

The gear ratio of a gear pulley system can be customized to achieve the desired speed and torque requirements of the machinery or equipment. By selecting the appropriate combination of driving and driven gears with different tooth counts, the gear ratio can be adjusted to meet specific operating parameters. This customization allows for precise control over the output speed and torque, ensuring optimal performance and compatibility with the application.

Mounting Options:

Gear pulleys can be customized with various mounting options to facilitate easy installation and integration into specific machinery or equipment. Mounting features such as keyways, set screws, or flanges can be incorporated into the gear pulley design, enabling secure attachment to shafts or other components. Customized mounting options ensure proper alignment and minimize the risk of slippage or misalignment during operation.

Surface Treatment and Coatings:

To enhance performance and durability, gear pulleys can undergo surface treatments and coatings customized for specific applications. Treatments such as heat treatment, carburizing, or nitriding can improve the gear pulley’s hardness and wear resistance. Additionally, coatings like lubricants, platings, or specialized materials can reduce friction, enhance corrosion resistance, or provide self-lubricating properties, depending on the operating conditions and requirements of the machinery or equipment.

Special Features:

Depending on the application, gear pulleys can be customized with special features or modifications. This may include the addition of keyways, grooves, or other attachments for auxiliary components, such as sensors, encoders, or brakes. Customized gear pulleys can also incorporate specific tolerances, backlash requirements, or noise reduction features, ensuring optimal performance and compatibility with the machinery or equipment.

In summary, gear pulleys can be customized in terms of design, dimensions, materials, tooth profile, gear ratio, mounting options, surface treatments, and special features. This customization allows gear pulleys to be tailored to the specific requirements of machinery and equipment, ensuring optimal performance, reliability, and compatibility in various industrial applications.

gear pulley

What are the advantages of using gear pulleys in various systems?

Gear pulleys offer several advantages when used in various systems. Here’s a detailed explanation of the advantages of using gear pulleys:

  • Efficient Power Transmission: Gear pulleys provide efficient power transmission between rotating shafts. They minimize energy losses by reducing friction and slippage, ensuring that a large portion of the input power is effectively transferred to the driven components. This efficiency is crucial in applications where maximizing power transfer is essential, such as in industrial machinery, automotive systems, and power generation equipment.
  • Speed Control: Gear pulleys allow for precise speed control in power transmission systems. By varying the sizes of the gears or pulleys, the rotational speed of the driven component can be adjusted relative to the input speed. This speed control capability is valuable in applications where different components within a system require specific rotational speeds, such as in conveyor systems, machining equipment, and automotive transmissions.
  • Torque Conversion: Gear pulleys assist in torque conversion during power transmission. By utilizing gears or pulleys with different sizes or numbers of teeth, gear pulleys can change the torque applied to the driven component. This torque conversion capability allows for the adaptation of power output to the requirements of the driven component. It is particularly beneficial in applications where precise torque delivery is crucial, such as in robotics, lifting systems, and heavy machinery.
  • Direction Control: Gear pulleys enable precise control over the direction of rotational motion in power transmission systems. By combining gears or pulleys in specific arrangements, the direction of rotation can be changed as needed. This direction control capability is advantageous in applications where components require bidirectional movement or when the power source needs to be synchronized with the driven component, such as in automotive steering systems, robotics, and conveyor systems with reversing functionality.
  • Compact Design: Gear pulleys allow for the design of compact power transmission systems. They can transmit power over relatively short distances while maintaining a small form factor. This compactness is advantageous in applications where space is limited, such as in compact machinery, automotive drivetrains, and portable equipment.
  • Load Distribution: Gear pulleys help distribute mechanical loads across multiple components within a system. By incorporating multiple gears or pulleys, power can be split and transmitted to several output shafts. This load distribution capability is beneficial in applications where power needs to be shared or when simultaneous operation of multiple components is required, such as in printing presses, conveyor systems with multiple branches, and complex mechanical systems.
  • Mechanical Advantage: Gear pulleys provide mechanical advantage in power transmission systems. The mechanical advantage is the ratio of output force (torque) to input force (torque). By utilizing gears or pulleys with different sizes, gear pulleys can amplify or reduce the mechanical advantage. This allows for the adaptation of power transmission to match the specific requirements of the driven component. Gear pulleys enable the transmission of high torque at low speeds or low torque at high speeds, depending on the mechanical advantage needed.
  • Durability and Reliability: Gear pulleys are known for their durability and reliability. They are designed to withstand high loads, resist wear, and operate smoothly over extended periods. Gear pulleys are commonly made from robust materials such as steel or hardened alloys, ensuring their longevity and ability to handle demanding applications. This durability and reliability are crucial in industries where continuous operation and minimal downtime are essential, such as in manufacturing, automotive, and heavy machinery.

These advantages make gear pulleys highly valuable in various systems across industries. Whether it’s for efficient power transmission, precise speed and torque control, compact design, load distribution, or reliable operation, gear pulleys offer versatile solutions to meet the diverse needs of mechanical systems.

China factory Machinery Components Balancing Machine, Gear, Wheel, Pulley, Axle, Shaft, Grinding Spindle (PHQ-300H)   pulley puller		China factory Machinery Components Balancing Machine, Gear, Wheel, Pulley, Axle, Shaft, Grinding Spindle (PHQ-300H)   pulley puller
editor by CX